SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Biometric Signal Processing.

Open Access Open Badges Research Article

Offline Signature Verification Using the Discrete Radon Transform and a Hidden Markov Model

J Coetzer1*, BM Herbst1 and JA du Preez2

Author Affiliations

1 Department of Applied Mathematics, University of Stellenbosch, Matieland 7602, South Africa

2 Department of Electrical and Electronic Engineering, University of Stellenbosch, Matieland 7602, South Africa

For all author emails, please log on.

EURASIP Journal on Advances in Signal Processing 2004, 2004:925026  doi:10.1155/S1110865704309042

The electronic version of this article is the complete one and can be found online at: http://asp.eurasipjournals.com/content/2004/4/925026

Received:31 October 2002
Revisions received:27 June 2003
Published:21 April 2004

© 2004 Coetzer et al.

We developed a system that automatically authenticates offline handwritten signatures using the discrete Radon transform (DRT) and a hidden Markov model (HMM). Given the robustness of our algorithm and the fact that only global features are considered, satisfactory results are obtained. Using a database of 924 signatures from 22 writers, our system achieves an equal error rate (EER) of 18% when only high-quality forgeries (skilled forgeries) are considered and an EER of 4.5% in the case of only casual forgeries. These signatures were originally captured offline. Using another database of 4800 signatures from 51 writers, our system achieves an EER of 12.2% when only skilled forgeries are considered. These signatures were originally captured online and then digitally converted into static signature images. These results compare well with the results of other algorithms that consider only global features.

offline signature verification; discrete Radon transform; hidden Markov model

Research Article